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MASS TRANSFER IN TURBULENT FLOW 
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Abstract. The local mass transfer coefficient in turbulent duct flow was measured using a new experimental 
technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion 
equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a 
point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained 
numerically agreed with Spalding’s asymptotic solution at x/D,: < 0.02 and Hatton et al.’ seigenvalue 
solution for symmetrical heat transfer which is valid for x/D,, > 1. Current asymmetric heat transfer 

results in the fully developed region fell between the eigenvalue and numerical solutions. 

NOMENCLATURE 

friction factor; 
diffusion coefticient : 
hydraulic diameter : 
eddy diffusivity of mass : 
a constant ; 
a constant : 
Nusselt number : 

(molecular) Prandtl number : 
turbulent Prandtl number ; 
Reynolds number based upon hydrau- 
lic diameter : 
(molecular) Schmidt number ; 
turbulent Schmidt number ; 
Stanton number : 
Spalding function : 
longitudinal velocity : 
friction velocity: 
velocity normal to wall ; 
mass of diffusing species per unit 
mass of mixture : 
distance in longitudinal direction ; 
dimensionlessdistancealong theduct : 
distance normal to wall : 
dimensionless distance normal to 
wall : 

* Richard I. Larson is now with the Genera1 Electric CO.. 
Schenectady. New York. 

8, eddy viscosity : 
+ 

G, 9 dimensionless total viscosity ; 
E& dimensionless total dit~usivity ofmass : 

V, kinematic viscosity ; 

CL dimensionless distance from the wall : 

P, density : 

t, shear stress. 

Subscripts 
bulk fluid conditions : 
opposite wall conditions; 
wall conditions. 

1. INTRODUCTION 

IN G+S absorption, evaporation into gas streams 
and partial condensation the mass transfer 
process may often involve the diffusion of a 
solute through a nontransferring gas in turbu- 
lent flow. To obtain a better understanding of 
the phenomena this investigation compares new 
asymmetric mass transfer data in turbulent flow 
with a theoretical analysis of the mass transfer 
process, The experiments measured the local 
mass transfer coefficient at one wall of a rect- 
angular duct from which water was evaporated. 
Recent work on the heat transfer theory through 
turbulent boundary layers provided the basis 
for analyzing the experimental results. 
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Current boundary layer heat transfer theories 
are distinguished from earlier efforts by the fact 
that the solutions are based on a partial dif- 
ferential equation for convective heat transfer in 
which the flow field is characterized by a 
“universal” velocity prolile. These new models 
unlike their predecessors, the Couette flow 
models, include temperature variation in the 
flow direction. However, the assumption of 
uniform fluid properties and knowledge of the 
wall shear stress remain as part of the derivation. 

Spalding [I] formulated the turbulent bound- 
ary layer heat transfer problem with the tem- 
perature field described in terms of a partial 
dit~erential equation having x+ and u+ co- 
ordinates. Kestin and Persen [2], Gardner and 
Kestin [3], and Smith and Shah [4] obtained 
numerical solutions to this equation for different 
boundary conditions and Prandtl numbers. 

Hatton and Quarmby [S] and Hatton, 
Quarmby and Grundy [6] investigated the heat 
transfer process for turbulent flow between two 
parallel plates. Their studies involved a partial 
differential equation written in terms of x,/D,, 
and y+ coordinates. The temperature field was 
determined by an eigenvalue solution to the 
differential equation. 

The mass transfer analysis described below 
is based on Spalding’s boundary layer theory. 
A continuous numerical solution to the dif- 
fusion equation is obtained for all axial locations 
extending from a point near the discontinuity 
in mass flux to the fully developed region. By 
analogy of the heat and mass transfer processes, 
the numerical solution is compared with Spald- 
ing’s boundary layer theory, and Hatton, 
Quarmby and Grundy’s eigenvalue solution for 
developing and fully developed flow. The experi- 
mental results for asymmetric mass transfer are 
then examined with respect to the numerical 
solution of the diffusion equation. 

2. THEORETICAL ANALYSIS 

2.1 Dl~~ion eq~u~ion 
The concentration field in a uniform-property 

turbulent fluid described by the universal 

velocity profile can be formulated into a partial 
differential equation analogous to the thermal 
energy equation derived by Spalding [ 11. The 
analogous diffusion equation has the following 
form : 

pug+ ptl’” =“p@+E)$Y ay ay (1) 

To solve this equation the wall shear stress must 
be known and the shear stress distribution in 
the fluid specitied. In Spalding’s analogous 
boundary layer formulation, the shear stress is 
assumed to be independent of the distance from 
the wall. At low mass transfer rates in channel 
fiow with uniform fiuid properties, the wall shear 
stress can be determined from ‘previous work, 
while the shear stress distribution in the fluid is 
linear. The two dimensional diffusion equation 
reduces to the form given below by performing a 
von Mises transformation and by assuming the 
universal velocity profle, u+ = ffy’), describes 
the flow field. 

where : 

c: = 
x 

x+ = s ?dx. 

x0 

(2) 

(W 

@b? 

(3c) 

This equation can be simplism to a parabolic 
form by defining a new variable, 5. 

atv i a2w 1 ah -= 
ax+ iT&p=foagZ (4) 

and 
u+ 

5= s (dy+idu*) du+. 

4 (5) 
0 
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A numerical solution was obtained for the 
following initial and boundary conditions. 

Inihi conditions. 

w= 0,x+ = 0, u+(or 5) 3 0 (6) 

Boundary conditions. 
Asymmetric mass transfer 

abv - 
a< c=. 

= constant : x+ > 0, U+(or 5) = 0 (7a) 

a vv 

at <=h 

= 0,x+ > O,u,f(or <) = 0. (7b) 

Symmetric mass transfer 

= constant, x+ > 0. (8) 

2.2 Eddy viscosity und eddy diffusitlity of muss 
Spalding’s expression for the velocity distribu- 

tion was used to determine the eddy viscosity 
and eddy mass diffusivity. In channel flow the 
dimensionless eddy viscosity is given by : 

1 
Eu+ = t 

Y h/2 [ 

$2 - u 
+ 

- $ exp (ku+) 
( 

_ 1 _ ku+ _ y _ !!$?)I 

- 1 - ku+ - (ku+)2 

2 
(9) 

and is obtained from Spalding’s single equation 
for the “law of the wall.” 

- 1 - ku+ 

(ku+)2 (ku+)” 

2 1 3! . (10) 
In the central region of the channel the eddy 
viscosity is assumed to be constant at that value 
corresponding to one quarter of the distance 
from both walls. 

To determine the eddy mass diffusivity, aD, 

the turbulent Schmidt number is assumed to be 
constant throughout the flow field at a value 
of 0.86. Selection of this value was based upon 
the reviews presented by Kestin and Richardson 
[7] and Spalding [8]. 

The Reynolds number is determined by inte- 
grating the f(r) profile (f(5) = u+c~): 

h/2 / 
N,, = 4 1 u+ dy+ = 4 ‘“r’r(t) di”. (11) 

b 0 

2.3 Culculution und present&ion oj’results 
Solution of the diffusion equation is accomp- 

lished using the Crank-Nicolson implicit 
method, together with the “successive over- 
relaxation” iterative scheme to increase the rate 
of convergence. This numerical method is out- 
lined by Smith [9]. 

The solution to the diffusion equation for 
internal channel flow is expressed in terms of the 
Spalding function, i.e. 

where the bulk concentration, 
coordinates is given by: 

(13) 

The Spalding function and axial distance, x+, 
are related to the Nusselt number and dimen- 
sional distance, x/D,, by the following formulas : 

N,, = S~(fi~)~hJ’s, (14) 

x/Oh = x+I(N~J~‘:S)~). (15) 

To determine the friction factor, f, the von 
K&-man equation was used : 

Jh= 2.0 log,, (N,dfl8)*) - 0.8. (161 
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The wall shear stress, assumed to be known in 
the formulation of the diffusion equation, can 
be easily calculated from the above expression. 
Harnett, Koh and McComas [lo] have pre- 
viously shown that the above friction factor 
equation is valid in channel and duct flow over 
a wide range of flow conditions. 

3. EXPERIMENTAL APPARATUS 

Measurement of the local turbulent mass 
transfer coefficient was performed by evapora- 
ting water into a fully developed turbulent air 
stream flowing inside a 3 by 1 in. duct. To 
establish the turbulent field an entrance length 
of 96 hydraulic diameters separated the air 
stream heaters and the mass transfer test section. 
A schematic diagram of the equipment is shown 
in Fig. 1. 

An electrically heated 400 mesh stainless 
steel wire cloth formed one of the 3 in. wide 
walls of the 36 in. long mass transfer test section. 
A 1 in. deep cavity located below the wire 
cloth contained the fluid to be evaporated. The 
wire cloth not only provided the energy for 
evaporation but also stabilized the gas--liquid 
interface through the capillary forces originating 

with the surface tension of the fluid and the small 
size of the pores in the cloth. The axial concen- 
tration profile at the vapor-interface was deter- 
mined from temperature measurements made 
at selected axial locations. These measurements 
described in more detail by Larson [ 111 were 
performed with thermocouple microprobes, 
positioned lo-16 mils below the screen to 
within an accuracy of t_OGIO5 in. The difference 
between the temperature as measured in the 
cavity and the surface temperature was shown 
to be less than 0*5”F by an analysis of the con- 
ductive heat transfer process within and below 
the screen apertures. The analysis was partially 
confirmed experimentally by measuring the 
temperature gradients below the screen. The 
concentration of vapor at the interface was 
determined by assuming vapor-liquid equih- 
brium. 

The average evaporation rate (mass flux) was 
determined by measuring time required to 
empty a calibrated glass vessel. Using this 
average value, the axial distribution of mass flux 
was determined by including the effect of 
simultaneous heat and mass transfer to or from 
the air stream. The maximum variation of local 

tiONEYCOM6, 
ENTRANCE DUCT TEST SPECIMEN EXIT DUCT 

CALIBRATED 
GLASS VESSE FEED RESERVOlR 

COMPRESSOR 

FIG. 1. Schematic diagram of experiments apparatus. 
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mass flux from inlet to outlet was 6 per cent. 
Heat transfer to or from the air stream played 
a small role in the evaporation process, since 
the electrically heated wire cloth provided 96- 
99 per cent of the energy for evaporation. An 
error analysis showed a maximum error of 9.6 
per cent in measuring the local mass transfer 
coefficient. This analysis included the maximum 
error in the measurements of the evaporation 
rate, the interface concentration, and the density, 
velocity, and viscosity of the air stream. The 
interface concentration contributed the largest 
error, 6.2 per cent. This was caused by a maxi- 
mum deviation in the axial temperature profile 
of.‘F from the average. The temperature across 
the width ofthe duct also showed a 2”Fvariation. 

4. DISCUSSION 

4.1 Compurison of the theoretical unulysis Grh 
other \wrk 

Spalding [8] derived an asymptotic solution 
to equation 2 that was valid at small values of 
xi with Ns, = Nscf. The following expression 
was pbtained for a constant mass flux boundary 
condition : 

(17) 
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An earlier solution by Lighthill to the diffusion 
equation in laminar flow gives the same formula. 
The difference in the above expression and the 
numerical solution was found to be less than 
one per cent at values of x+ less than 10 (x/D, = 
0.02 at N,, = 7148). Beyond this value of .Y+ 
the numerical results for channel flow departed 
from the asymptotic solution (see Fig. 2). 

In the developing and fully developed region 
the numerical solution for symmetrical heat or 
mass transfer was in excellent agreement with 
Hatton, Quarmby and Grundy’s [6] eigenvalue 
solution to the analogous thermal energy 
equation for turbulent flow between parallel 
plates. Hatton et ul.‘s solution is limited to values 
of .-c/D, greater than one. Thus, the numerical 
solution described here for symmetrical mass 
transfer provides a continuous solution to the 
diffusion equation for all values of x/D, and is 
limited only to the point at which the solution is 
initiated. In this case the initial x+ was 0.05. 

To solve the diffusion equation numerically 
Spalding’s continuous eddy viscosity distribu- 
tion modified to include the shear distribution in 
the fluid was used, together with a constant value 
for the turbulent Schmidt number, 086. Hatton 
et ul.‘s work involved Deissler’s eddy viscosity 
profile near the wall and Aver and Chao’s [13] 

CURVE I SYMMETRIC BOUNDARY CONDITION. 
NUMERICAL SOWTION X/Dh>O.Ol 
EIGENVALUE SOLUTI&, X/oh> 1.0 

CURVE 2 ASYMMETRIC BOUNDARY CONDITION. 
NUMERICAL SCLUTION. X/oh > 0.01 

CURVE 3 ASYMMETRIC BOUNDARY CONDITION, 
EIGENVALUE SOLUTION. X/DI, >I.0 

CURVE 4 ASYMPTOTIC SOLUTION 

NRc= 7146 3 

NSc=Np,=0.62 

FIG. 2. Comparison of numerical solution with asymptotic and eigenvalue solutions 
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expression for the turbulent Prandtl number. In data and the numerical solution at a Reynolds 
an earlier paper Hatton and Quarmby’s solution number of 11200. At the high Reynolds number, 
involved Deissler’s eddy viscosity profile and a 30200, the experimental results fall below the 
constant value of one for the turbulent Prandtl curve by approximately 16 per cent in the fully 
number. developed flow region. 

The Nusselt number obtained by Hatton ef 
~1. for the asymmetric boundary condition was 
21 per cent below the Nusselt number for sym- 
metrical heat transfer. In our work a 9 per cent 
reduction was found, Fig. 2. A 10-15 per cent 
reduction in the Nusselt number for asymmetric 
boundary conditions was found in Sparrow, 
Lloyd and Hixon’s [14] experiments on turbu- 
lent heat transfer in fully developed duct flow. 
These experimental data fall between the numeri- 
cal results reported here and Hatton’s er ~11.‘~ 
eigenvalue solution. 

This difference can be attributed to the value 
of the turbulent Schmidt number, O-86, used in 
solving the diffusion equation. Hatton et d’s 
eigenvalue solutions show lower Nusselt num- 
bers for Pr, = 1 than that determined using 
Azer and Chao’s expression. Reductions of 
18.8 and 13.5 per cent were found at Reynolds 
numbers of 7104 and 73 712, respectively. 

4.2 Compurison of theoretical unulysis with muss 
transfer measurements 

Figure 3 shows the experimental data for 
asymmetric mass transfer in a 3 by 1 in. duct and 
the numerical solution of equation (2) for 
channel flow. Notwithstanding the secondary 
flow that occurs in the corners of the duct, good 
agreement is obtained between the experimental 

Azer and Chao’s equation gives values for 
the turbulent Prandtl number that are in good 
agreement with that used in our numerical 
solution, that is, 0.82 and 0.87 at Reynolds 
number of 14500 and 43400, respectively. If 
the value of the turbulent Schmidt number was 
increased, better agreement between the experi- 
mental data and the numerical solution would 
be observed at the high Reynolds number. 
Mass transfer data showing the Schmidt num- 
ber-Reynolds number relationship to within 
the accuracy required by this analysis are not 
available and therefore, this effect is not included. 

500 ! I ,,,r,,, , I I11111, I I I II,,, 

EXPERIMENTAL DATA 

ONR. =30,200 

AN RC = I I, 200 

NSC 
= 0.62 

IO I I 1 I I I I 1 I L 1 I111111 I I I Ill,, 
0.1 1.0 

X/b,,, 
10.0 KXlO 

FIG. 3. Comparison of numerical solution with mass transfer results, 
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5. CONCLUSIONS 

1. A new experimental technique was developed 
to measure the local mass transfer coefficient in 
turbulent duct flow. Water was evaporated into 
a turbulent air stream from one side of a duct 
using an electrically heated line wire mesh cloth 
at the liquid-vapor interface. The maximum 
experimental error was 9.6 per cent. 
2. A numerical solution to the diffusion equation 
describing the asymmetric mass transfer process 
in turbulent flow agreed quite well with the 
experimental results. It was also in excellent 
agreement with Hatton et d’s eigenvalue 
solution for symmetrical heat transfer between 
parallel plates and Spalding’s asymptotic solu-, 
tion for small values of x/D,. The eigenvalue 
solution was limited to values of x/D, greater 
than one. Agreement with the asymptotic solu- 
tion was l’ound at values of x/D, less than 0.02. 
3. In the fully developed region with asymmetric 
mass transfer, Hatton et d’s solution gave a 
value for the Nusselt number that was 21 per 
cent below the symmetrical case. The numerical 
solution showed a 9 per cent reduction. Current 
heat and mass transfer experiments show a 
l&l.5 per cent reduction. 
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TRANSFERT MASSIQUE DANS UN ECOULEMENT TURBULENT 

R6umb A I’aide d’une nouvelle technique expbrimentale on a mesure le coefficient local de transfert 
massique lors d’un icoulement turbulent en conduite. Les rbultats exfirimentaux s’accordent t&s bien 
avec une solution numtrique de l’bquation de diffusion turbulente pour un i?coulement dans un canal. 
La formulation de I’Bquation de diffusion fournit une solution continue depuis un point proche de la 
discontinuitt dans le flux massique jusquP la r&on entierement dkveloppte. Les nombres de Nusselt 
obtenus numbriquement s’accordent avec la solution asymptotique de Spalding pour x/D, < 0,02 et la 
solution B valeur propre de Hatton et toll. pour un transfert thermique symetrique valable pour x/D, > 1. 
Des rCsultats de transfer? therrnique asymtirique dans la r&ion entikrement dheloppk se situent entre 

les solutions B valeur propre et numtriques. 
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STOFF~BERGANG IN TURBULENTER STR~MUNG 

Z~~~g-~r iirtiiche Stoff~~rgangsk~~zient in turbulenter Rohrstr~mung wurde mit Hilfe 
eincr neuen ~ersuchsmethode gemessen. Die Ergebnisse stimmen sehr gut t&rein mit einer numeriscben 
L&sung fiir die turbubnte Diffusionsgleichung in Rohrstriimungen. Die Diffusionsgleichung hefert eine 
kontinuieriiche Losung von einem Punkt in der N&he einer Diskontinuitlt des Massenstroms bis in den 
voll entwickelten Bereich. Die berechneten Nusseltzahlen stimmen iiberein mit der asymptotischen 
Ltisung von Spalding ftir x/D, < 0,02 und mit der Eigenwertliisung von Hatton und anderen fur 
symmetrische Warmetibertragung gtiltig ftir x/D,, > 1. Die Ergebnisse ftir den asymmetrischen Fall im voll 

entwickelten Bereich fallen zwischen die Eigenwert- und die numerische LBsung. 

~ACC~O~~EH B TYP~Y~EHTHO~ HOTOH~ 

A~oTa~H~-~O~a~bH~~ Ko3~~4~eHT ~ac~oo6Me~a B Tpy6e ~3Me~~~c~ no HOBO& 

aK~~ep~Me~Ta~bH0~ ~eTo~nKe. 3K~~ep~MeHTa~bH~e pe3yJrbTaTbl xopoulo ~0r~Iacy~Tc~ c 

Y~c~eH~~~~ pe~eH~~~~ c ~o~o~b~ ypaBHemR Typ6y~e~THo~ ~~~~~3~~ RXR Katfana. 
YpaxiEemfe ~mj~y3m meeT nenpep~Bnoe pemeHHe OT TOYKH R 0Kpe~THocT~ paspbma 

MaCCOBOI'O IlOTOIia A0 IlOJiHOCTbIO pa3BHTO$4 06nacTH. %CJIa HyCCexbTa, IlOJlyYeHHbIe 

YnCJIeHHbIM MeTOAOM, COBna~amT c aCnMItTOTlWeCKI4H peurennem CnonnMHra IIpIl x/Dn 

< 0,02 M C J&aHHnMH n0 CObCTBeHHbIM 3HaYeHMRM Ha OCHOBe PeUIeHnfi XaTTOHa 1cI np. AJIR 

TennOO6MeHa npn CnMMeTpWiHbIX yCJIOBllRX IIpa x/D,, > 1, Pe3yJlbTaTbl IIO TennOO6MeHy 

npnHeCMMMeTP~~HbIXyC~OBMRXBnOJIHOCTbK)~a3B~TO~o6~acT~~~e~aTMe~~yCO6CTBeHHbIMrn 

II YnCJIeHHbIMtI peUIeH%WIMEf. 


