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Abstract. The local mass transfer coefficient in turbulent duct flow was measured using a new experimental

technique. The experimental results agreed quite well with a numerical solution to the turbulent diffusion

equation in channel flow. Formulation of the diffusion equation provided a continuous solution from a

point near the discontinuity in mass flux to the fully developed region. The Nusselt numbers obtained

numerically agreed with Spalding’s asymptotic solution at x/D, < 0-02 and Hatton et al.’ scigenvalue

solution for symmetrical heat transfer which is valid for x/D, > 1. Current asymmetric heat transfer
results in the fully developed region fell between the eigenvalue and numerical solutions.

NOMENCLATURE
A friction factor:
D, diffusion coefficient:
Dy, hydraulic diameter :
E, eddy diffusivity of mass:
E, a constant ;
k, a constant :
Nyw  Nusselt number:
Np,,  (molecular) Prandt! number
Np,, turbulent Prandt] number;
Ng» Reynolds number based upon hydrau-
lic diameter ;
Ng.,  (molecular) Schmidt number;
Ng.,, turbulent Schmidt number;
Ng.  Stanton number:
Sp, Spalding function;
u, longitudinal velocity ;
u*, friction velocity ;
v, velocity normal to wall;
W, mass of diffusing species per unit
mass of mixture;
X, distance in longitudinal direction ;
x*, dimensionless distance along the duct ;
¥, distance normal to wall;
y*, dimensionless distance normal to

wall:

* Richard I. Larson is now with the General Electric Co.,
Schenectady. New York.
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eddy viscosity:

R dimensionless total viscosity ;
£h. dimensionless total diffusivity of mass;
v, kinematic viscosity :
¢, dimensionless distance from the wall ;
o, density ;
T, shear stress.
Subscripts
b, bulk fluid conditions:
h, opposite wall conditions;

W, wall conditions.

()

1. INTRODUCTION

IN Gas absorption, evaporation into gas streams
and partial condensation the mass transfer
process may often involve the diffusion of a
solute through a nontransferring gas in turbu-
lent flow. To obtain a better understanding of
the phenomena this investigation compares new
asymmetric mass transfer data in turbulent flow
with a theoretical analysis of the mass transfer
process. The experiments measured the local
mass transfer coefficient at one wall of a rect-
angular duct from which water was evaporated.
Recent work on the heat transfer theory through
turbulent boundary layers provided the basis
for analyzing the experimental results.
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Current boundary layer heat transfer theories
are distinguished from earlier efforts by the tact
that the solutions are based on a partial dif-
ferential equation for convective heat transfer in
which the flow field is characterized by a
“universal” velocity profile. These new models
unlike their predecessors, the Couette flow
models, include temperature variation in the
flow direction. However, the assumption of
uniform fluid properties and knowledge of the
wall shear stress remain as part of the derivation.

Spalding [1] formulated the turbulent bound-
ary layer heat transfer problem with the tem-
perature field described in terms of a partial
differential equation having x* and u* co-
ordinates. Kestin and Persen [2], Gardner and
Kestin [3], and Smith and Shah [4] obtained
numerical solutions to this equation for different
boundary conditions and Prandt] numbers.

Hatton and Quarmby {[5] and Hatton,
Quarmby and Grundy [6] investigated the heat
transfer process for turbulent flow between two
parallel plates. Their studies involved a partial
differential equation written in terms of x/D,
and y* coordinates. The temperature field was
determined by an eigenvalue solution to the
differential equation.

The mass transfer analysis described below
is based on Spalding’s boundary layer theory.
A continuous numerical solution to the dif-
fusion equation is obtained for all axial locations
extending from a point near the discontinuity
in mass flux to the fully developed region. By
analogy of the heat and mass transfer processes,
the numerical solution is compared with Spald-
ing’s boundary layer theory, and Hatton,
Quarmby and Grundy’s eigenvalue solution for
developing and fully developed flow. The experi-
mental results for asymmetric mass transfer are
then examined with respect to the numerical
solution of the diffusion equation.

2. THEORETICAL ANALYSIS
2.1 Diffusion equation
The concentration field in a uniform-property
turbulent fluid described by the universal
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velocity profile can be formulated into a partial
differential equation analogous to the thermal
energy equation derived by Spalding [1]. The
analogous diffusion equation has the following
form:

ow
oy’
To solve this equation the wall shear stress must
be known and the shear stress distribution in
the fluid specified. In Spalding’s analogous
boundary layer formulation, the shear stress is
assumed to be independent of the distance from
the wall. At Jow mass transfer rates in channel
flow with uniform fluid properties, the wall shear
stress can be determined from 'previous work,
while the shear stress distribution in the fluid is
linear. The two dimensional diffusion equation
reduces to the form given below by performing a
von Mises transformation and by assuming the
universal velocity profile, u* = f(y*), describes
the flow field.

dw 1 (du™\ 0  [du*™\ ow
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A numerical solution was obtained for the
following initial and boundary conditions.

Inicial conditions.

w=0,x"=0,uT(or &) 2 0 (6)

Boundary conditions.
Asymmetric mass transfer

0

v = constant:x* > 0, u*(or ) =0 (7a)
3 |-

ow + +

— =0,x" > 0,u, (or &) = 0. (7b)
3 -

Symmetric mass transter

ow ow

— = = constant, x* > 0. (8
080 ~ 38 ies :

2.2 Eddy viscosity and eddy diffusivity of mass
Spalding’s expression for the velocity distribu-
tion was used to determine the eddy viscosity
and eddy mass diffusivity. In channel flow the
dimensionless eddy viscosity is given by:

1 1
P — liy;r,z —ut — 7 (exp (ku™)

A7)
(ku™)?

=)
2 3

k fexptku®) — 1 — ku* — (ku*)? }
e ) o

and is obtained from Spalding’s single equation
for the ““law of the wall.”

— 1 —ku* —

1
yt=ut + 5 [exp(ku*) —1 — ku”

(ku*)? (km]
— 5 — 3 . (10)

In the central region of the channel the eddy
viscosity is assumed to be constant at that value
corresponding to one quarter of the distance
from both walls.

To determine the eddy mass diffusivity, ep,

the turbulent Schmidt number is assumed to be
constant throughout the flow field at a value
of 0-86. Selection of this value was based upon
the reviews presented by Kestin and Richardson
[7] and Spalding [8].

The Reynolds number is determined by inte-
grating the f(£) profile (f(&) = u*ep):

hj2 5

Nee=4 | utdy* =4 | f(5)d¢.
0

0

(1)

2.3 Cualculation and presentation of results

Solution of the diffusion equation is accomp-
lished using the Crank-Nicolson implicit
method, together with the ‘“‘successive over-
relaxation” iterative scheme to increase the rate
of convergence. This numerical method is out-
lined by Smith [9].

The solution to the diffusion equation for
internal channel flow is expressed in terms of the
Spalding function, i.e.

NSr
S =3 =
P= U8

—(OWCE)e g
Wy — Wp

(12)

where the bulk concentration, w;, in w — ¢
coordinates is given by:

W, = L . (13)

The Spalding function and axial distance, x™,
are related to the Nusselt number and dimen-
sional distance, x/D,, by the following formulas :

Ny = Sp(f/8)* Ng N, (14)
x/Dy = xTA(NRd f/8)). (15)

To determine the friction factor, f, the von
Karman equation was used:

1
——— = 2:0log,o (Npd f/8)}) — 08.

NTi (16
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The wall shear stress, assumed to be known in
the formulation of the diffusion equation, can
be easily calculated from the above expression.
Harnett, Koh and McComas {10] have pre-
viously shown that the above friction factor
equation is valid in channel and duct flow over
a wide range of flow conditions,

3. EXPERIMENTAL APPARATUS

Measurement of the local turbulent mass
transfer coeflicient was performed by evapora-
ting water into a fully developed turbulent air
stream flowing inside a 3 by 1 in. duct. To
establish the turbulent field an entrance length
of 96 hydraulic diameters separated the air
stream heaters and the mass transfer test section.
A schematic diagram of the equipment is shown
in Fig. 1.

An electrically heated 400 mesh stainless
steel wire cloth formed one of the 3 in. wide
walls of the 36 in. long mass transfer test section.
A 1 in. deep cavity located below the wire
cloth contained the fluid to be evaporated. The
wire cloth not only provided the energy for
evaporation but also stabilized the gas-liquid
interface through the capillary forces originating

with the surface tension of the fluid and the small
size of the pores in the cloth. The axial concen-
tration profile at the vapor-interface was deter-
mined from temperature measurements made
at selected axial locations. These measurements
described in more detail by Larson [11] were
performed with thermocouple microprobes,
positioned 10-16 mils below the screen to
within an accuracy of +0-0005 in. The difference
between the temperature as measured in the
cavity and the surface temperature was shown
to be less than 0-5°F by an analysis of the con-
ductive heat transfer process within and below
the screen apertures. The analysis was partially
confirmed experimentally by measuring the
temperature gradients below the screen. The
concentration of vapor at the interface was
determined by assuming vapor-liquid equili-
brium.

The average evaporation rate (mass flux) was
determined by measuring time required to
empty a calibrated glass vessel. Using this
average value, the axial distribution of mass flux
was determined by including the effect of
simultaneous heat and mass transfer to or from
the air stream. The maximum variation of local

HONE YCOMB
7 ENTRANCE DUCT TEST SPECIMEN __ EXIT DUCT
SECONDARY
HEATER
LioUID ‘ l
RESERVOIR | 1 1 D‘égm“gg[“
PRIMARY
HEATER
CALIBRATED \ “CONTINUOUS
GLASS VESSEL FEED RESERVOIR
LAMINAR
FLOW
ELEMENT
AIR
" FILTER
CONTROL
VALVE
COMPRESSOR

F1G. 1. Schematic diagram of experimental apparatus.
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mass {lux from inlet to outlet was 6 per cent.
Heat transfer to or from the air stream played
a small role in the evaporation process, since
the electrically heated wire cloth provided 96-
99 per cent of the energy for evaporation. An
error analysis showed a maximum error of 9:6
per cent in measuring the local mass transfer
coetticient. This analysis included the maximum
error in the measurements of the evaporation
rate, the interface concentration, and the density,
velocity, and viscosity of the air stream. The
interface concentration contributed the largest
error, 6-2 per cent, This was caused by a maxi-
mum deviation in the axial temperature profile
of 2°F from the average. The temperature across
the width of the duct also showed a 2°F variation.

4. DISCUSSION
4.1 Comparison of the theoretical analysis with
other work

Spalding [8] derived an asymptotic solution
to equation 2 that was valid at small values of
x* with Ny, = Ng,,. The following expression
was obtained for a constant mass flux boundary
condition:

{V_S_’N& = 0651 <£ )As.

Ny, (17)

An earlier solution by Lighthill to the diffusion
equation in laminar flow gives the same formula.
The difference in the above expression and the
numerical solution was found to be less than
one per cent at values of x* less than 10 (x/D;, =
0-02 at Ny, = 7148). Beyond this value of x*
the numerical results for channel flow departed
from the asymptotic solution (see Fig. 2).

In the developing and fully developed region
the numerical solution for symmetrical heat or
mass transfer was in excellent agreement with
Hatton, Quarmby and Grundy’s [6] eigenvalue
solution to the analogous thermal energy
equation for turbulent flow between parallel
plates. Hatton et al.’s solution is limited to values
of x/D,, greater than one. Thus, the numerical
solution described here for symmetrical mass
transfer provides a continuous solution to the
diffusion equation for all values of x/D, and is
limited only to the point at which the solution is
initiated. In this case the initial x* was 0-05.

To solve the diffusion equation numerically
Spalding’s continuous eddy viscosity distribu-
tion modified to include the shear distribution in
the fluid was used, together with a constant value
for the turbulent Schmidt number, 0-86. Hatton
et al’s work involved Deissler’s eddy viscosity
profile near the wall and Azer and Chao’s [13]

500, T L—
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CURVE | SYMMETRIC BOUNDARY CONDITION,
NUMERICAL SOLUTION, X/Dp >0.0(

EIGENVALUE SOLUTION, X/On> 1.0

CURVE 2 ASYMMETRIC BOUNDARY CONDITION,
NUMERICAL SOLUTION, X/Dn > 0.0!

100~ —
- CURVE 3 ASYMMETRIC BOUNDARY CONDITION, 7
Nny EIGENVALUE SOLUTION, X/Dp >1.0 ]
- CURVE 4 ASYMPTOTIC SOLUTION .
: AN .
\_—
— Nge= 7148 3 T
Ngc=Np, =0.62
Te) 1 1 [ | 1 1 1 L1 a1 al 1 1 Pl 1 1 ) I W T U
0.0 0.1 x/0}0 100 100.0

Fi6. 2. Comparison of numerical solution with asymptotic and eigenvalue solutions.
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expression for the turbulent Prandtl number. In
an earlier paper Hatton and Quarmby’s solution
involved Deissler’s eddy viscosity profile and a
constant value of one for the turbulent Prandtl
number.

The Nusselt number obtained by Hatton et
al. for the asymmetric boundary condition was
21 per cent below the Nusselt number for sym-
metrical heat transfer. In our work a 9 per cent
reduction was found, Fig. 2. A 10-15 per cent
reduction in the Nusselt number for asymmetric
boundary conditions was found in Sparrow,
Lloyd and Hixon’s [14] experiments on turbu-
lent heat transfer in fully developed duct flow.
These experimental data fall between the numeri-
cal results reported here and Hatton’s et al’s
eigenvalue solution.

4.2 Comparison of theoretical analysis with mass
transfer meusurements

Figure 3 shows the experimental data for
asymmetric mass transfer in a 3 by 1 in. duct and
the numerical solution of equation (2) for
channel flow. Notwithstanding the secondary
flow that occurs in the corners of the duct, good
agreement is obtained between the experimental
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data and the numerical solution at a Reynolds
number of 11200, At the high Reynolds number,
30200, the experimental results fall below the
curve by approximately 16 per cent in the fully
developed flow region.

This difference can be attributed to the value
of the turbulent Schmidt number, 0-86, used in
solving the diffusion equation. Hatton et al.’s
eigenvalue solutions show lower Nusselt num-
bers for Pr, =1 than that determined using
Azer and Chao’s expression. Reductions of
18-8 and 13-5 per cent were found at Reynolds
numbers of 7104 and 73 712, respectively.

Azer and Chao’s equation gives values for
the turbulent Prandtl number that are in good
agreement with that used in our numerical
solution, that is, 0-82 and 0-87 at Reynolds
number of 14500 and 43400, respectively. If
the value of the turbulent Schmidt number was
increased, better agreement between the experi-
mental data and the numerical solution would
be observed at the high Reynolds number.
Mass transfer data showing the Schmidt num-
ber-Reynolds number relationship to within
the accuracy required by this analysis are not
available and therefore, this eftect is not included.

500 T —

100
NNu

(011 L

T T T T TTTT T T T
EXPERIMENTAL DATA
oNge =30,200 -
ANg, = 11,200
Ng, = 0.62 .

Oooo

t 1 1thl

App

I W W 1 I I S WO N I

10.0
X/Dn

Fi1G. 3. Comparison of numerical solution with mass transfer results.
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5. CONCLUSIONS

1. A new experimental technique was developed
to measure the local mass transfer coefficient in
turbulent duct flow. Water was evaporated into
a turbulent air stream from one side of a duct
using an electrically heated fine wire mesh cloth
at the liquid-vapor interface. The maximum
experimental error was 9-6 per cent.

2. A numerical solution to the diffusion equation
describing the asymmetric mass transfer process
in turbulent flow agreed quite well with the
experimental results. It was also in excellent
agreement with Hatton et al’s eigenvalue
solution for symmetrical heat transfer between
parallel plates and Spalding’s asymptotic solu-
tion for small values of x/D,. The eigenvalue
solution was limited to values of x/D, greater
than one. Agreement with the asymptotic solu-
tion was found at values of x/D,, less than 0-02.
3. In the fully developed region with asymmetric
mass transter, Hatton et al’s solution gave a
value for the Nusselt number that was 21 per
cent below the symmetrical case. The numerical
solution showed a 9 per cent reduction. Current
heat and mass transfer experiments show a
10-15 per cent reduction.
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TRANSFERT MASSIQUE DANS UN ECOULEMENT TURBULENT

Résumé- A 1'aide d’une nouvelle technique expérimentale on a mesuré le coefficient local de transfert
massique lors d’un écoulement turbulent en conduite. Les résultats expérimentaux s’accordent trés bien
avec une solution numérique de I’équation de diffusion turbulente pour un écoulement dans un canal.
La formulation de I'équation de diffusion fournit une solution continue depuis un point proche de la
discontinuité dans le flux massique jusqu’a la région entiérement développée. Les nombres de Nusselt
obtenus numériquement s’accordent avec la solution asymptotique de Spalding pour x/D, < 0,02 et la
solution a valeur propre de Hatton et coll. pour un transfert thermique symétrique valable pour x/D,, > 1.
Des résultats de transfert thermique asymétrique dans la région entiérement développée se situent entre
les solutions a valeur propre et numeériques.
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STOFFUBERGANG IN TURBULENTER STROMUNG

Zusammenfassung— Der Ortliche Stoffiibergangskoeffizient in turbulenter Rohrstrémung wurde mit Hilfe
einer neuen Versuchsmethode gemessen. Die Ergebnisse stimmen sehr gut Gberein mit einer numerischen
Losung fiir die turbulente Diffusionsgleichung in Rohrstrémungen. Die Diffusionsgleichung liefert eine
kontinuierliche Losung von einem Punkt in der Nihe einer Diskontinuitit des Massenstroms bis in den
voll entwickelten Bereich. Die berechneten Nusseltzahlen stimmen iberein mit der asymptotischen
Losung von Spalding fiir x/D, < 0,02 und mit der Eigenwertlosung von Hatton und anderen fiir
symmetrische Warmeiibertragung, giiltig fiir x/D, > 1. Die Ergebnisse fiir den asymmetrischen Fall im voll
entwickelten Bereich fallen zwischen die Eigenwert- und die numerische Losung.

MACCOOBMEH B TYPBVJIEHTHOM [OTOKE

Anporanmsa—Jloxanpueit xoaddunuent maccoobmena B TpyOe HBMEDAJICH N0 HOBOK
SKCHIEPUMEHTANIBHON METORMKE. JKCOECDUMEHTANBHEIC DPE3YNBTATH XOPOMO COTIACYITCA C
YHCACHHRIMM DeHieHHAMU ¢ NOMOWIBI ypasseHusa typOyientnoft mauddysmu mis Kawasa.
Vpasrenne anddysuu uMeeT HenpephIBHOE pemieHHe OT TOUYKH B OKDECTHOCTH paspuiBa
MAaccoBOr¢ NOTOKAa [0 NOJHOCTBIO passuroh obmactu. Yucma Hyccenpra, nonyuesusnie
UMCHCHHHIM METOLOM, COBNAJAOT C aCMMNTOTHYECKHR peurenueM Cronpmura upu x/Dy
< 0,02 1 ¢ naHHEIMA 0 COGCTBEHHBIM 3HAYEHWAM HA OCHOBE peuleHuH XaTTOHA W Ap. A
Tennoo0MeHa NpH CHMMETPMYHBIX YCIOBUAX ipu x/D, > 1. PesymsraTel no remnootmeny
IpU HECHMMeTPHYHEIX YCJIOBUAX B IIOTHOCTHIO PASBHTON 06IaCTH JIEIKAT MEMAY COOCTBEHHBIMU
U YUCJICHHBIMU PEHIeHNAMHE .



